If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2+8p-1=0
a = 9; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·9·(-1)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-10}{2*9}=\frac{-18}{18} =-1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+10}{2*9}=\frac{2}{18} =1/9 $
| 14=-(p-8)= | | 12=-4(-6x-3)= | | -8=-(x+4)= | | x+36=xx5 | | k/8=64/8 | | p-1=5p+3p-8= | | a+5=-5a+5= | | m*7=-4*7 | | n*290=145 | | 8y2-13y+5=0 | | 3x-1=+5 | | (12+3x)*0,33=7(2-x)-2 | | t+11=7+11 | | 11+t=7+11 | | q-4=3q-10 | | 3x²+10x-8=0 | | 3x+2/3=4x+5/2 | | (h-10)/3=2 | | 8z-30=2 | | 3×+7y=8 | | 8r+4=6r+10 | | 2(x-3)5x=36 | | 2(x-3)+5=36 | | h-10/3=2 | | X2+3x+8=32 | | 1/4=n/10 | | 5{x=4}=0 | | 9-6h=21 | | 4x+136=14x-14 | | 6/n=12/20 | | 7^x+3=1/49 | | -56-4n=9+9n |